Dynamically controlling the emission of single excitons in photonic crystal cavities

نویسندگان

  • Francesco Pagliano
  • YongJin Cho
  • Tian Xia
  • Frank van Otten
  • Robert Johne
  • Andrea Fiore
چکیده

Single excitons in semiconductor microcavities represent a solid state and scalable platform for cavity quantum electrodynamics, potentially enabling an interface between flying (photon) and static (exciton) quantum bits in future quantum networks. While both single-photon emission and the strong coupling regime have been demonstrated, further progress has been hampered by the inability to control the coherent evolution of the cavity quantum electrodynamics system in real time, as needed to produce and harness charge-photon entanglement. Here using the ultrafast electrical tuning of the exciton energy in a photonic crystal diode, we demonstrate the dynamic control of the coupling of a single exciton to a photonic crystal cavity mode on a sub-nanosecond timescale, faster than the natural lifetime of the exciton. This opens the way to the control of single-photon waveforms, as needed for quantum interfaces, and to the real-time control of solid-state cavity quantum electrodynamics systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical measurements of quantum emitters coupled to Anderson-localized modes in disordered photonic-crystal waveguides.

We present a statistical study of the Purcell enhancement of the light emission from quantum dots coupled to Anderson-localized cavities formed in disordered photonic-crystal waveguides. We measure the time-resolved light emission from both single quantum emitters coupled to Anderson-localized cavities and directly from the cavities that are fed by multiple quantum dots. Strongly inhibited and ...

متن کامل

Spontaneous Emission Spectrum from a Driven Three-Level Atom in a Double-Band Photonic Crystal

Abstract The spontaneous emission spectrum from a driven three-level atom placed inside a double-band photonic crystal has been investigated. We use the model which assumes the upper levels of the atomic transition are coupled via a classical driving field. The transition from one of the upper levels to lower level couples to the modes of the modified reservoir, and the transition from the oth...

متن کامل

Optical manipulation of quantum dot excitons strongly coupled to photonic crystal cavities

In this paper, we review some recent cavity quantum electrodynamic (CQED) experiments with single quantum dot exciton coupled to photonic crystal cavities, performed in our group. We show how the coupled quantumdot/cavity system can be used to modulate light with at a very fundamental level with very low power and discuss some applications of these low power modulators.

متن کامل

A comparison between experiment and theory on few-quantum-dot nanolasing in a photonic-crystal cavity.

We present an experimental and theoretical study on the gain mechanism in a photonic-crystal-cavity nanolaser with embedded quantum dots. From time-resolved measurements at low excitation power we find that four excitons are coupled to the cavity. At high excitation power we observe a smooth low-threshold transition from spontaneous emission to lasing. Before lasing emission sets in, however, t...

متن کامل

Quantum - dot excitons in nanostructured environments F b p

The interaction between light and quantum-dot (QD) excitons is strongly influenced by the environment in which the QD is placed. We have investigated the interaction by measuring the time-resolved spontaneous-emission rate of QD excitons in different nanostructured environments. Thereby, we have determined the oscillator strength, quantum efficiency and spin-flip rates of QD excitons as well as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014